If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+6w-41=0
a = 1; b = 6; c = -41;
Δ = b2-4ac
Δ = 62-4·1·(-41)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-10\sqrt{2}}{2*1}=\frac{-6-10\sqrt{2}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+10\sqrt{2}}{2*1}=\frac{-6+10\sqrt{2}}{2} $
| 1/4×x=6 | | 237=126-w | | 43=m+41 | | 8x+8=3x+30 | | 0=x^2+4x+91 | | x^2-((5/2)x)+(25/16)=(36/16) | | 30+(2x-30)=x | | —6+4x/4+1+x/20=5x+2/5 | | 30=(2x-30) | | 15=5.5n | | 150h+75=14h+90 | | (a+1)(2a+2)=0 | | 1.28=x-45/8 | | 6x+1=7x+2 | | 6x+4=(x-8) | | n^2=64/121 | | 3=-x+2 | | 3-3x=15-6x | | x-5x=126 | | 104.43=(b*17.7)/2 | | 126-5x=x | | x+20x=126 | | 4x5=x+26 | | 4x+24/9=2 | | 2n+38=52 | | 3x-5=8(x-2) | | 8(x-7)-3x=-6 | | 4+32=36*(w+w) | | 8n-15=73 | | x-5=2/3x+1/9 | | 3(2x-5=4x+1 | | (12+6x)/3+x=4.75 |